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Abstract: Wind tunnel test results of 35 dome models with rise/span ratio (f/D) from 0 to 0.5 and 
height/span ratio (h/D) from 0 to 0.5 in boundary layer flow with power law index 0.27 were 
collected. A wind pressure database for the dome-like roofs was established. The focus of the research 
reported in this paper was on the differences of wind pressure spectra on the meridian with the change 
of curvature and height. Random center selection method was used to write Radial Basis Function 
Neural Network (RBFNN) programs to train, validate and test the ANNs. Several network 
architectures, data processing and data grouping methods were investigated. The final estimation 
models found not only accurate but also theoretically consistent. Models were also compared with 
previous regression formula, and the results were much better. In the future, the ANN models will be 
implemented using a network platform and a simple web browser user interface. Wind pressure 
spectra calculated by the server can be easily obtained with simple parameter inputs, which can be 
used as preliminary estimations before wind tunnel tests. 
Keywords: ANN, RBFNN, wind engineering, wind pressure spectrum, hemispherical dome, large 
span structure 
 
 
 
1 INTRODUCTION  

Wind resistant design of buildings often needs to 
acquire wind spectra from wind tunnel tests. 
Using regression formulas to process and 
analyze experimental data of wind spectra 
usually is not very accurate. Therefore, one of 
the most important issues is how to use 
experimental wind load aerodynamic database 
more effectively. 

The development of wind load estimation 
models for high-rise buildings using artificial 
neural networks (ANNs) has already been 
studied by the Wind Engineering Research 
Center of Tamkang University (WERC-TKU) 
for a long time. However, no comprehensive 
research about dome structures using ANNS has 
been conducted. Only a large-span research 
project in 2011 conducted by research assistant 
Hsin-Chieh Chung trained ANNs for the 
predictions of wind spectra of fixed shape dome, 

which examined the axis and circle relation to 
coherence wind spectra. Never the less, there are 
a lot of rooms for further development of the 
estimation models for different shapes of domes. 

In this study, the wind pressure database of 
dome models that established by Dr. Yuan-Lung, 
Lo was used. Wind tunnel tests of 35 models 
with rise/span ratio (f/D) from 0 to 0.5 and 
height/span ratio (h/D) from 0 to 0.5 were 
conducted in boundary layer flow with power 
law index 0.27. Comparing with the data that 
used by Hsin-Chieh Chung, the focus was more 
on the differences of wind pressure spectra on 
the meridian with the change of curvature and 
height.  

Random center selection method was used to 
write Radial Basis Function Neural Network 
(RBFNN) programs to train, validate and test the 
ANNs. Several network architectures, data 
processing and data grouping methods were 
investigated. The final estimation models found 
not only accurate but also theoretically 
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consistent. Models were also compared with 
previous regression formula, and the results 
were much better.  

In the future, the ANN models will be 
implemented using a network platform and a 
simple web browser user interface. Wind 
pressure spectra calculated by the server can be 
easily obtained with simple parameter inputs, 
which can be used as preliminary estimations 
before wind tunnel tests. 

In the following sections, we explain the wind 
pressure data characteristics and classification, 
present the ANN learning algorithm and 
parameter settings of the RBFNNs used, and 
discuss the results and future researches.  

2 RESEARCH BACKGROUNDS 

2.1 Previous Researches 

Larg span building strucutures have been widely 
adapted these days, and dome-like roof is a 
design commonly used. Spectrum characteristics 
of wind pressures have been focused as an 
important investigation subject in estimating 
wind loads and mentioned in several 
publications (Ogawa et al., 1991; Uematsu et al., 
1997 and 2008; Li et al., 2006). Many other 
researches regarding the dome-like roofs have 
also been done in various aspects (e.g., Maher, 
1965; Letchford and Sarkar, 2000; Taylor, 1991; 
Cheng and Fu, 2010; Qiu et al., 2010 and 2014). 
However, there is no systematic discussion in 
terms of basic parameters, such as the ratio of 
roof rise to roof span, the ratio of base wall 
height to roof span, or the location over the 
surface. 

Artificial neural network is an approach to 
simulate or predict the results of complex 
domain by using similar (but highly simplified) 
models of the biological structures found in 
human brain. Training ANNs with existing cases 
with reasonable answers can deduct 
multivariable nonlinear models to simulate or 
predict the results of similar problems. Artificial 
neural networks have been used by several 
researchers as a computational method to predict 
wind coefficients and spectra as well as 
interference effects of adjacent buildings (e.g., 
Chen et al., 2003; English and Fricke, 1999; 
Huang and Gu, 2005; Khanduri et al., 1997; 
Zhang and Zhang, 2004; Cheng et al., 2007; 

Wang and Cheng, 2010, 2011 and 2015). 
However, not many ANN related applications 
have been done in dome-like structures. 

2.2 Wind Tunnel Tests 

Systematic wind tunnel tests of pressure 
measurements are conducted in a wind tunnel 
with the cross section of 12.5 m in length, 1.8 m 
in height and 1.8 m in width. A turbulent 
boundary layer flow is simulated by properly 
equipped spires and roughness blocks. The 
normalized mean wind velocity profile is fitted 
by the power law with index α = 0.27 and the 
turbulent intensity varies from 18% to 23% at 
model height ranges. 

Testing models are manufactured by two parts, 
the acrylic roof model and the acrylic circular 
base model. The geometric size of the former is 
adjusted by the rise/span ratio (f/D) and the latter 
is by the height/span ratio (h/D). Both models 
are combined arbitrarily to give in total 35 cases 
of testing models. Figure 1 shows the geometric 
definition and Table 1 lists the case names of 35 
models. 

The total pressure tap numbers on the 
meridian line for different models are slightly 
different due to the curvature change. For the B 
and C series, the total tap numbers are 27. 
Otherwise, 29 taps were used for all the other 
models. 

 

Figure 1.  Geometric nomenclature and 
coordinate system 
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Table 1. Case names of the 35 testing models 

 f/D 
h/D 0.0 0.1 0.2 0.3 0.4 0.5 

0.0 -- B0 C0 D0 E0 F0 
0.1 A1 B1 C1 D1 E1 F1 
0.2 A2 B2 C2 D2 E2 F2 
0.3 A3 B3 C3 D3 E3 F3 
0.4 A4 B4 C4 D4 E4 F4 
0.5 A5 B5 C5 D5 E5 F5 

2.3 Wind Pressure Characteristics on Dome 
Roof 

Instantaneous pressures on the model surface 
were scanned and normalized. The mean and 
RMS values were then estimated to examine the 
basic aerodynamic characteristics. The ensemble 
averages of mean and RMS pressure coefficients 
along the central meridian line of all cases were 
plotted and analized. Some consistent 
characteristics can be pointed out in terms of f/D 
and h/D, which may help the ANN estimations 
of power spectra in the following section. 

Power spectrum of fluctuating pressures at 
each tap is estimated and ensemble averaged. 
For example, Figure 2 shows the F5 case of 
reduced power spectra along the central 
meridian line in elevation angle (θ) order. From 
the figure, it is clearly indicated that the 
spectrum characteristics gradually changes from 
upstream to downstream. Several signatures may 
be identified for describing their spectrum 
characteristics. 

 

Figure 2.  Reduced power spectra along the 
central meridian line for the F5 model 

3 ANN FORMULATION 

This section explains several important issues 
regarding ANN simulation of the reduced power 
spectra along the central meridian line.  

3.1 Data Selection and Proccessing  

The data used to train, simulate and validate the 
spectra were selected from 20 dome models with 
f/D = 0.2, 0.3, 0.4, 0.5 and h/D = 0.1, 0.2, 0.3, 
0.4, 0.5. They are the cases indicated with 
shaded background in Table 1. The cases of f/D 
= 0.0 and 0.1 are not included to avoid the bias 
due to the separation in the frontal sharp edge. 

The total number of data points for each of the 
original spectrum is 4095; the reduced 
frequencies are from 0.01 to 23. To reduce the 
burden of computing resource and speed up the 
ANN training process, only 1523 data points 
were selected (frequency from 0.0112 to 8.5). 

Different from previous ANN spectrum 
trainings conducted at WERC-TKU, unsmoothed 
spectrum data were deliberately used this time to 
investigate their influence on ANN prediction 
outcomes. 

3.2 Network Architecture 

Radial Basis Function Neural Network (RBFNN) 
is chosen for its good performance in 
comparison with all other ANN models. The 
keys to keep the accuracy of a RBFNN are the 
size of the hidden layer, the radial basis function 
and the number of center points. In this research, 
the Gaussian function is assumed for the radial 
basis function for our RBFNN, defined by Eq. 1. 
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where σc is the standard deviation of the distance 
between centers; ||x* - c|| is the Euclidean 
distance between x* and c. The neuron centers of 
the RBFNN are selected randomly and the 
number of center points is determined using a 
gradually increasing algorithm based on the 
calculation of root-mean-square estimate 
(RMSE), which uses fewer center points at first, 
and gradually increase the number of center 
points until no obvious improvement in the 
overall RMSE.  

The RBFNN program, used for training, 
simulation and plotting, was implemented in 
MATLAB. Figure 3 shows the architecture 
diagram of the RBFNN. The input layer includes 
five variables as shown in Table 2, and the 
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output layer has one output variable, which is 
the spectrum value at the corresponding reduced 
frequency. Table 2 lists the training and 
validation cases, and the properties of the 
variables.  

 

Figure 3.  RBFNN Architecture for pressure 
spectra estimation of dome-like roofs 

Note that, the location of a pressure tap on the 
meridian line of the dome roof can be defined 
either by x/D or θ. The two variables are not 
fully independent. However, the trained 
networks of using only one of them at the 
beginning of the research yielded unstable 
results. After testing different combinations of 
input variables, the five input variables selected 
in Figure 3 and Table 2 gave best answers. 
Another important issue is the normalization of 
the input variables. This particular experience 
tells us that ANN training results are very 
sensitive to the magnitude of elevation angle θ, 
which is currently set as its radian value times 7. 

Table 2. RBFNN schema settings 

Input Variables 
 

(normalization 
schema) 

θ 0 ~π  (× 7) 
x/D 0 ~ 1  (× 0.3) 
f/D 0.2 ~ 0.5 
h/D 0.1 ~ 0.5 

nD/UH 0.0112 ~ 8.5 
Output Variable Spectrum Value 

Training Cases C1, C3, C5, D1, D3, D5,  
E1, E3, E5, F1, F3, F5 

Validation Cases C2, C4, D2, D4, E2, E4, F2, F4 

3.3 Data Grouping  

At the initial stage of the research, the 
simulation of spectra at the low frequency 
section is usually bad. Given more data point 
using interpretation did not improve the situation 
as before. Further, to correctly predict the two 
humps shown in low-frequency and high- 
frequency energies, the input variable, reduced 
frequency, is divided by a selected threshold 
value, 0.3, into two sections for ANN training 
and prediction. That is, the data were divided 
into two groups for every spectrum, and two 
RBFNNs were trained separately for the two 

sections. There are 9 overlapping points in the 
two sections. When the ANNs are used for 
simulation, the spectra are connected together 
using data smoothing technique over the 9 points 
to ensure the appearance of a smooth spectrum 
curve. 

Based on the aerodynamic behaviour and 
observation of the experimental results, the roof 
surface can be categorized into three regions, 
windward, separation and wake region. Pressure 
spectra located at the same region present 
similar characteristics. With this concept in mind, 
spectrum data can be further grouped for 
training to improve the accuracy of our ANNs.  

After numerous trials and network parameter 
adjustments, we formulated 11 neural networks, 
5 for the low-frequency range and 6 for the high 
frequency range of spectra, for the full coverage 
of the problem scope. Table 3 lists the 
application region of each of the ANN. The 
grouping method is different between low and 
high frequency range. It is because the numbers 
of data points in the two frequency range are 
different and the numbers of pressure taps in 
different region are also different. The total 
number of data points has to be adequate when 
training a neural network. Too few, the network 
cannot converge. Too many, it becomes slow and 
sometimes lost accuracy. On the practical side, 
we want to keep the number of ANNs down for 
better usability. Complicated grouping is a 
compromise between accuracy and various 
reasons mentioned above. 

Table 3. RBFNNs trained for pressure spectra 
estimation of dome-like roofs 

Low frequency range 
(nD/UH < 0.3) 

High frequency range 
(nD/UH ≥ 0.3) 

Windward region 
(0° ~ 80°) 

Windward region 
(0° ~ 80°) 

Separation region 1 
(80° ~ 90°) 

Separation region 1 
(80° ~ 85°) 

Separation region 2 
(85° ~ 90°) 

Separation region 2 
(90° ~ 130°) 

Separation region 3 
(90° ~ 110°) 

Separation region 4 
(110° ~ 130°) 

Wake region 1 
(130° ~ 150°) Wake region 

(130° ~ 180°) Wake region 2 
(150° ~ 180°) 
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4 NETWORK TESTING AND 
DISCUSSION  

In this section, a case (f/D = 0.25 & h/D = 0.45) 
is given below to test the spectrum estimation 
capability of the ANNs developed. Figure 4 
shows the power spectrum predicted by ANN at 
roof location No. 1 compared with 4 adjacent 
cases, C4, C5, D4 and D5. For the same case, 
the power spectrum at tag location No. 25 is 
shown in Figure 5. 

The red dotted lines in the two figures are the 
ANN estimated spectra, which are 
conservatively located within the boundary of 
the results of the neighbouring cases that have 
wind tunnel test data. All the 29 tag locations of 
this case have been checked with similar results. 
11 other cases that given in between wind tunnel 
experimental f/D and h/D have also been 
examined and the outcomes are satisfactory. 

 

Figure 4.  ANN tested for f/D=0.25 & h/D=0.45 
at tag location No. 1 with 4 similar cases 

 

Figure 5.  ANN tested for f/D=0.25 & h/D=0.45 
at tag location No. 25 with 4 similar cases 

5 CONCLUSIONS  

In this study, power spectra of fluctuating wind 
pressures on various dome-like roofs were 
investigated under a suburban terrain flow. By 
examining the mean and RMS pressure 
coefficients, basic flow patterns were 
demonstrated in terms of the rise/span and 
height/span ratios.  

The technology of artificial neural network 
was then proposed to simulate the variations of 
power spectra of fluctuating pressures over the 
dome-like roofs. Taking 20 experimental models 
out off the 35 in the database, 12 cases were 
used to train our ANNs and 8 were taken as 
validation cases. Based on our previous 
experiences, Radial Basis Function Neural 
Network (RBFNN), which delivered very good 
performance simulating wind force coefficients 
and spectra in our previous researches, was 
chosen. After the initial struggle, RBFNN 
performed equally well this time. 11 RBFNNs 
were trained to simulate pressure spectra along 
the meridian line of dome-like roofs with 
accurate results. Preliminary tests indicated that 
the ANN prediction model is consistent and 
provides better agreements with the empirical 
results than the previous regression formulas. 

What is different from previous efforts can be 
listed as follows:  

(1) Smoothed data were always used in the 
pass for ANN simulation of wind spectra. This is 
the first time unsmoothed data was used and the 
prediction results are unaffected. The tendency, 
continuity and accuracy agree with the original 
experimental spectra well.  

(2) Not only data was divided into different 
training groups according to the aerodynamic 
characteristics of different flow fields along the 
meridian line but also every spectrum was 
divided into two sections for training. The 
sophisticated data classification strategy is 
unique to this study and improved the accuracy 
of our ANN model dramatically, which can be 
adopted in similar future researches.  

(3) Input variable normalization schema is 
surprisingly influential to the accuracy of the 
result, which needs more investigation. 

The preliminary assumptions and the selection 
of basis function may be adjusted in the future to 
reduce the parameters for each network layer. 
From the viewpoint of average structural 
engineers, the aerodynamic database based ANN 
models are a convenient and practical tool if an 
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easy-to-use GUI can be provided. 
Nevertheless, it is worth mentioning that, one 

turbulent flow simulated in this research may 
limit the practical application of the proposed 
ANN model. It is expected in the near future to 
include different flow conditions and more 
testing models. 
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